Saturday, July 11, 2009

Frequently asked questions about stem cells

Basic Questions

What are stem cells?
Stem cells are cells that have the potential to develop into some or many different cell types in the body, depending on whether they are multipotent or pluripotent. Serving as a sort of repair system, they can theoretically divide without limit to replenish other cells for as long as the person or animal is still alive. When a stem cell divides, each "daughter" cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell.

For a discussion of the different kinds of stem cells, such as embryonic stem cells, adult stem cells, or induced pluripotent stem cells, see Stem Cell Basics.

What classes of stem cells are there?
Stem cells may be pluripotent or multipotent.

Pluripotent stem cells can give rise to any type of cell in the body except those needed to support and develop a fetus in the womb.

Stem cells that can give rise only to a small number of different cell types are called multipotent.

Where do stem cells come from?
There are several sources of stem cells. Pluripotent stem cells can be isolated from human embryos that are a few days old. Cells from these embryos can be used to create pluripotent stem cell "lines" —cell cultures that can be grown indefinitely in the laboratory. Pluripotent stem cell lines have also been developed from fetal tissue (older than 8 weeks of development).

In late 2007, scientists identified conditions that would allow some specialized adult human cells to be reprogrammed genetically to assume a stem cell-like state. These stem cells are called induced pluripotent stem cells (iPSCs). IPSCs are adult cells that have been genetically reprogrammed to an embryonic stem cell–like state by being forced to express genes and factors important for maintaining the defining properties of embryonic stem cells. Although these cells meet the defining criteria for pluripotent stem cells, it is not known if iPSCs and embryonic stem cells differ in clinically significant ways. Mouse iPSCs were first reported in 2006, and human iPSCs were first reported in late 2007. Mouse iPSCs demonstrate important characteristics of pluripotent stem cells, including expressing stem cell markers, forming tumors containing cells from all three germ layers, and being able to contribute to many different tissues when injected into mouse embryos at a very early stage in development. Human iPSCs also express stem cell markers and are capable of generating cells characteristic of all three germ layers.

Although additional research is needed, iPSCs are already useful tools for drug development and modeling of diseases, and scientists hope to use them in transplantation medicine. Viruses are currently used to introduce the reprogramming factors into adult cells, and this process must be carefully controlled and tested before the technique can lead to useful treatments for humans. In animal studies, the virus used to introduce the stem cell factors sometimes causes cancers. Researchers are currently investigating non-viral delivery strategies.

Non-embryonic, or "adult" stem cells have been identified in many organs and tissues. Typically there is a very small number of multipotent stem cells in each tissue, and these cells have a limited capacity for proliferation, thus making it difficult to generate large quantities of these cells in the laboratory. Stem cells are thought to reside in a specific area of each tissue (called a "stem cell niche") where they may remain quiescent (non-dividing) for many years until they are activated by a normal need for more cells, or by disease or tissue injury. These cells are also called somatic stem cells.

Why do scientists want to use stem cell lines?
Once a stem cell line is established from a cell in the body, it is essentially immortal, no matter how it was derived. That is, the researcher using the line will not have to go through the rigorous procedure necessary to isolate stem cells again. Once established, a cell line can be grown in the laboratory indefinitely and cells may be frozen for storage or distribution to other researchers.

Stem cell lines grown in the lab provide scientists with the opportunity to "engineer" them for use in transplantation or treatment of diseases. For example, before scientists can use any type of tissue, organ, or cell for transplantation, they must overcome attempts by a patient's immune system to reject the transplant. In the future, scientists may be able to modify human stem cell lines in the laboratory by using gene therapy or other techniques to overcome this immune rejection. Scientists might also be able to replace damaged genes or add new genes to stem cells in order to give them characteristics that can ultimately treat diseases.

Healthcare Questions

Why are doctors and scientists so excited about human embryonic stem cells?
Stem cells have potential in many different areas of health and medical research. To start with, studying stem cells will help us to understand how they transform into the dazzling array of specialized cells that make us what we are. Some of the most serious medical conditions, such as cancer and birth defects, are due to problems that occur somewhere in this process. A better understanding of normal cell development will allow us to understand and perhaps correct the errors that cause these medical conditions.

Another potential application of stem cells is making cells and tissues for medical therapies. Today, donated organs and tissues are often used to replace those that are diseased or destroyed. Unfortunately, the number of people needing a transplant far exceeds the number of organs available for transplantation. Pluripotent stem cells offer the possibility of a renewable source of replacement cells and tissues to treat a myriad of diseases, conditions, and disabilities including Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury, burns, heart disease, diabetes, and arthritis.

Have human embryonic stem cells been used successfully to treat any human diseases yet?
Scientists have only been able to do experiments with human embryonic stem cells (hESCs) since 1998, when a group led by Dr. James Thomson at the University of Wisconsin developed a technique to isolate and grow the cells. Although hESCs are thought to offer potential cures and therapies for many devastating diseases, research using them is still in its early stages.

In late January 2009, the California-based company Geron received FDA clearance to begin the first human clinical trial of cells derived from human embryonic stem cells.

Read the Geron press release

Adult stem cells such as blood-forming stem cells in bone marrow (called hematopoietic stem cells, or HSCs) are currently the only type of stem cell commonly used to treat human diseases. Doctors have been transferring HSCs in bone marrow transplants for over 40 years and advances in techniques of collecting, or "harvesting" HSCs have been made. HSCs are now used to reconstitute the immune system after leukemia, lymphoma, or various blood or autoimmune disorders have been treated with chemotherapy.

The clinical potential of adult stem cells has also been demonstrated in the treatment of other human diseases that include diabetes and advanced kidney cancer. However, these newer uses have involved studies with a very limited number of patients.

What will be the best type of stem cell to use for therapy?
Pluripotent stem cells, while having great therapeutic potential, face formidable technical challenges. First, scientists must learn how to control their development into all the different types of cells in the body. Second, the cells now available for research are likely to be rejected by a patient's immune system. Another serious consideration is that the idea of using stem cells from human embryos or human fetal tissue troubles many people on ethical grounds.

Until recently, there was little evidence that multipotent adult stem cells could change course and provide the flexibility that researchers need in order to address all the medical diseases and disorders they would like to. New findings in animals, however, suggest that even after a stem cell has begun to specialize, it may be more flexible than previously thought.

There are currently several limitations to using adult stem cells. Although many different kinds of multipotent stem cells have been identified, adult stem cells that could give rise to all cell and tissue types have not yet been found. Adult stem cells are often present in only minute quantities and can therefore be difficult to isolate and purify. There is also evidence that they may not have the same capacity to multiply as embryonic stem cells do. Finally, adult stem cells may contain more DNA abnormalities—caused by sunlight, toxins, and errors in making more DNA copies during the course of a lifetime. These potential weaknesses might limit the usefulness of adult stem cells.

I have Parkinson’s Disease. Is there a clinical trial that I can participate in that uses stem cells as therapy?
The public may search a database of NIH-sponsored clinical trials at www.clinicaltrials.gov. Enter the search terms of interest (in this case, Parkinson's Disease and stem cells) to search for applicable clinical trials.

Where can I donate umbilical cord stem cells?

NIH cannot accept donated umbilical cord stem cells from the general public. The National Marrow Donor Program maintains a Web page on donating cord blood at http://www.marrow.org/HELP/Donate_Cord_Blood_Share_Life/index.html, and the International Cord Blood Society has one at http://www.cordblood.org/index.php?rm=common_page&id=10.

Research and Policy Questions

Which research is best to pursue?
The development of stem cell lines that can produce many tissues of the human body is an important scientific breakthrough. This research has the potential to revolutionize the practice of medicine and improve the quality and length of life. Given the enormous promise of stem cell therapies for so many devastating diseases, NIH believes that it is important to simultaneously pursue all lines of research and search for the very best sources of these cells.

Why not use adult stem cells instead of using human embryonic stem cells in research?
Human embryonic stem cells are thought to have much greater developmental potential than adult stem cells. This means that embryonic stem cells may be pluripotent—that is, able to give rise to cells found in all tissues of the embryo except for germ cells rather than being merely multipotent—restricted to specific subpopulations of cell types, as adult stem cells are thought to be.

What are the NIH Guidelines on the utilization of stem cells derived from human fetal tissue (embryonic germ cells)?
The Federal Register Announcement National Institutes of Health Guidelines for Research Using Human Pluripotent Stem Cells (230k PDF; get Adobe Reader), published August 25, 2000, was "superceded as it pertains to embryonic stem cell research" on November 14, 2001). However, Section II. B, titled "Utilization of Human Pluripotent Stem Cells Derived from Human Fetal Tissue," still governs human embryonic germ cell research. In addition, Section III, titled "Areas of Research Involving Human Pluripotent Stem Cells That Are Ineligible for NIH Funding," governs both human embryonic stem cell and human embryonic germ cell research.

May individual states pass laws to permit human embryonic stem cell research?
Individual states have the authority to pass laws to permit human embryonic stem cell research using state funds. Unless Congress passes a law that bans it, states may pay for research using human embryonic stem cell lines that are not eligible for federal funding.

Where can I find information about patents obtained for stem cells?
The U.S. Patent and Trademark Office offers a full-text search of issued patents and published applications. Try searching for "stem cell" or "stem cells."

Cell Line Availability and the Registry

I am a scientist funded by the NIH. How many cell lines are available to me, and how do I get them?

NIH is currently developing new guidelines for embryonic stem cell eligibility.

These guidelines will be finalized in early July.

For interim guidance see "Implementation of Executive Order on Removing Barriers to Responsible Scientific Research Involving Human Stem Cells."

Under prior presidential policy, there were 21 independent, fully developed stem cell lines available for distribution. Some of these cell lines are available through the National Stem Cell Bank at reduced cost. The remaining lines may be purchased by contacting the cell line providers directly. Information on the lines and how to contact the National Stem Cell Bank and the individual providers can be found on the NIH Stem Cell Registry.

I'm interested in purchasing more than one cell line from the NIH Stem Cell Registry. What is known about the status of the cell lines and their availability?
Many of the cell lines have been characterized as embryonic stem cells by detecting expression of surface antigen markers specific to embryonic stem cells, determining if the cells are pluripotent, and demonstrating that the cells are undifferentiated. A number of scientific publications have described the characterization of human embryonic stem cells. Although the characterization approaches may differ across laboratories, an example of the strategies used can be found in Thomson et al. (1998), Science, 282,1145–1147.

The National Stem Cell Bank and the individual providers of the federally eligible cells are working to make them available to researchers. This includes developing quality control measures to grow and reproduce the cell lines in sufficient numbers, having the administrative structure to receive and process requests, and establishing material transfer agreements with research purchasers. The National Stem Cell Bank and the individual providers of federally eligible cell lines have the most up-to-date information on availability. A list of these sources and contact information is available on the NIH Stem Cell Registry.

Who owns the cells?
The stem cell lines remain the property of the individual stem cell providers, as listed on the NIH Stem Cell Registry. Researchers may negotiate a material transfer agreement (MTA) with either the National Stem Cell Bank on behalf of the individual providers, or directly with the cell providers in order to specify their rights and responsibilities concerning resulting data, publications, and potential patents. Examples of MTAs negotiated between the Department of Health and Human Services/NIH and various stem cell line providers are listed by provider on the NIH Stem Cell Registry.

What policies govern use of stem cell lines from WiCell Research Institute?
WiCell has published FAQs About WiCell's Policies on the Use of Its hESC Lines to address this question.

间充质干细胞移植

  ■ 什么是间充质干细胞

  间充质干细胞(MSCs)是属于中胚层的一类多能干细胞,主要存在于结缔组织和器官间质中,以骨髓组织中含量最为丰富,由于骨髓是其主要来源,因此统称为骨髓间充质干细胞。骨髓间充质干细胞具有以下特性:

  一、具有强大的增殖能力和多向分化潜能,在适宜的体内或体外环境下不仅可分化为造血细胞,还具有分化为肌细胞、肝细胞、成骨细胞、软骨细胞、基质细胞等多种细胞的能力。
  二、具有免疫调节功能,通过细胞间的相互作用及产生细胞因子抑制T细胞的增殖及其免疫反应 ,从而发挥免疫重建的功能。
  三、具有来源方便,易于分离、培养、扩增和纯化,多次传代扩增后仍具有干细胞特性,不存在免疫排斥的特性。
  正是由于间充质干细胞所具备的这些免疫学特性,使其在自身免疫性疾病以及各种替代治疗等方面具有广阔的临床应用前景。通过自体移植可以重建组织器官的结构和功能,并且可避免免疫排斥反应。

  ■ 间充质干细胞移植疗法

  尽管骨髓中间充质干细胞含量相对较多,但仅占0.001%~0.01%,难以满足细胞治疗的需要,故需要在体外分离纯化,培养扩增才能满足要求。
  间充质干细胞移植,指的是将间充质干细胞从自身采集,然后进行培养、纯化,再回输进患者体内用以治疗硬皮病、皮肌炎、红斑狼疮、类风湿、运动神经元病等免疫性疾病的一种最前沿的治疗方法。不仅可以达到近期改善患者的临床症状的目的,更为重要的是可以提高远期临床疗效、减少病情反复的几率,甚至达到治愈的目的,为广大患者摆脱病痛的身心折磨,走向健康之路。

  治疗过程
  第一步:对患者的整体状况进行评估,如果没有禁忌症如:感染、肾危象、心包大量积液等的情况下,行细胞动员4-5天。
  第二步:MSCs的采集:我院采用SPECTER多功能细胞分离机分离MSCs细胞。
  第三步:MSCs的培养及扩增,大约20天左右。
  第四步:MSCs的移植。移植途径:①直接在皮损部位多靶点注射。②静脉移植,将扩增的MSCs静脉输入,使之通过血液循环到达病变部位。

  ■ 间充质干细胞移植疗法优势

骨髓间充质干细胞移植具有以下优势:I移植痛苦小,副作用小,不易引起感染;II 骨髓间充质干细胞移植病程短,从采集到干细胞培养、纯化,再回输进患者体内,只需要很短时间;III骨髓间充质干细胞移植费用低;IV骨髓间充质干细胞移植疗效较好,短时间内就可以改善皮肤硬化、肌肉无力等症状,是治疗免疫系统疾病很有前途的一种手段。


骨髓间充质干细胞总结

2003年8月,为给大家提供一个网上交流干细胞研究经验的平台,我们干细胞版设立了骨髓间充质干细胞培养讨论区,经过近三个月的讨论学习,我们既学习丰富了自己的知识体系,也对间充质干细胞尤其是分离培养方面有了更为翔实的认识,为了大家阅读的方便,我们决定把本版中的相关内容,同时参考部分书目和文献,做一总结。

一、骨髓间充质干细胞的分离

目前常用的分离MSC的方法有全骨髓法和密度梯度离心法,全骨髓法即根据干细胞贴壁特性,定期换液除去不贴壁细胞,从而达到纯化MSC的目的。密度梯度离心法即根据骨髓中细胞成分比重的不同,提取单核细胞进行贴壁培养。随着对MSC表面抗原认识的深入,有人利用免疫方法如流式细胞仪法、免疫磁珠法等对其进行分离纯化,但经过流式或磁珠分选后的细胞出现了增殖缓慢等一些问题,加之耗费较大和技术的难度,在某种程度上限制了这些方法的广泛应用。

1. 直接培养法(全骨髓培养法)
1987年,Friedenstein等发现在塑料培养皿中培养的贴壁的骨髓单个核细胞在一定条件下可分化为成骨细胞、成软骨细胞、脂肪细胞和成肌细胞,而且这些细胞扩增20-30代后仍能保持其多向分化潜能,这类细胞即为骨髓间充质干细胞(BMSC),其工作对今后MSC的研究具有重要意义,不仅证实了骨髓MSC的存在,而且创建了一种体外分离和培养MSC的简便可行的方法,得到了广泛的应用。
culture-spirit采用直接贴壁法,24-36小时首次换液,换液时用PBS洗两次,7-10天传第一代,以后2-3天传代。培养基采用Hyclone的DMEM/F-12(1:1),血清是天津TBD的FBS(顶级),得到了较好的培养结果。
布兰卡根据自己培养大鼠MSC的经验,详细介绍了实验步骤:
(1)接种后60-80分钟,换液去除悬浮细胞
(2)原代培养24h,48h各换液一次
(3)观察细胞情况,在原代培养7天左右时,如观察到成片的典型形态的细胞,在瓶底用Marker笔标记,0.25%胰酶消化,镜下观察控制,约5-10分钟(室温太低时应放置到孵箱中),加入全培养基终止消化,瓶体朝上,吸管轻轻吹打4-8分钟,尤其是标记部位。不要用力吹打,以免把贴壁较牢的成纤维细胞,上皮样细胞吹打下来
(4)传代到新瓶中,加入少量培养基,孵箱静置20-30分钟后,MSC大多牢固贴壁。瓶底朝上,轻轻吹打,丢弃悬浮以及贴壁不牢的细胞(大多是上皮样细胞),加入全培养基开始传代培养,如观察仍有较多杂细胞,可重复上述步骤。
(5)经上述处理后,原代的那瓶细胞仍有一些MSC生长,可继续按原代培养,如观察到MSC的克隆,仍可按上述步骤纯化处理。
(6)原代或传代的细胞如观察的少量成片的杂细胞,可直接镜下瓶底标记后,超净台里用长吸管尖端机械刮除,吸出去掉。
菊花与刀用的是全骨髓培养法,直接用含10%的FBS培养基冲洗大鼠的股骨和胫骨,为了避免冲起许多气泡应缓慢冲,冲的次数不应太多。冲洗后不用离心直接接种在培养瓶里,48h~72h后首次换液,一般7~10天可传代。
天之饺子介绍的小鼠MSC的分离方法:取6w小鼠的股骨和胫骨,直接用含培养基冲出骨髓,一定要尽量把干垢端的骨髓冲干净。冲洗后不离心直接接种在培养瓶里,24-48h后去悬浮,再接下来的每3-4天换液一次,直到需要传代。

2. 密度梯度离心法
裴雪涛等用比重为1.073g/ml的percoll分离(400g×20min)人骨髓MSCs,取界面处细胞层,离心后洗涤以2×105/cm2的密度接种,72h后更换培养液,弃掉未贴壁细胞,以后每3d换液一次。细胞长到80%汇合时1:1传代。
菊花与刀利用PERCOLL密度1.073分离大鼠MSC 时,用2400rpm×20mins后可见中间有一层约1~2mm厚的白色层,仔细用吸管吸取这一层再用PBS离心2遍即可加培养基和胎牛血清培养即rMSCs,.
周进明等利用密度为1.082的percoll分离小鼠MSCs,500g×30min离心后,取中间的单个核细胞层,PBS洗两次,接种于IMDM培养基,1d后换液,去掉非贴壁细胞,以后每3-4天换液。
jetter用过FICOLL,FERCOLL,上海二分厂的淋巴细胞分离液分离MSC细胞效果都不错,当然所获细胞群的纯度不一,Percoll最纯,而上海二分厂的淋巴细胞分离液所获细胞群的传代能力优秀(35 PASSAGE)。
本版的部分园友认为MSC贴壁培养得到的细胞不均一,但是多能分化能力和增殖力好,percoll分离得到的细胞较为均一,多能分化性和增殖力不如贴壁培养的,尤其是增殖力相差很远,有人添加bFGF或/和表皮生长因子发现可以增强增殖能力。

二、骨髓间充质干细胞的培养
天之饺子认为,间质干细胞的培养一定要用塑料培养瓶,不能用玻璃的。因为象间质干这类的基质细胞不易贴玻璃,而且现在买的进口好品牌的培养瓶都涂有一层促细胞贴壁的物质,多数园友培养时都添加10-15%胎牛血清。

分离培养结果的差异可能是由于各个研究小组标本来源、采用的分离方法不同从而所获得的细胞不同,或者用来检测的细胞代数不同,或者培养过程中用的胎牛血清不同,导致MSCs获得或失去这些表面标记物的表达。

三、骨髓间充质干细胞的特性
体外培养的MSC体积小,成梭形,核浆比大。不表达分化相关的细胞标志,如I、II、III型胶原、碱性磷酸酶或Osteopontin;也不表达SH2、SH3、CD29、CD44、CD71、CD90、CD106、CD120a、CD124、CD166和多种表面蛋白,这群细胞特性稳定,扩增一代和两代后的细胞同质性分别达到95%和98%.MSC联系传代培养和冷冻保存后仍能具有多向分化潜能,而且保持正常的核型核端粒酶活性,但不易自发分化,在体外特定的诱导条件下,MSC可以分化为骨、软骨、脂肪、肌腱、肌肉、神经等多种细胞。

四、其他相关内容
Jiang将从成人以及成年大鼠和小鼠骨髓分离的间充质干细胞(CD45-TER119-)命名为多潜能成年祖细胞,他们证明,MAPC高表达端粒酶,而且随着细胞的扩增,端粒的长度不变,单个MAPC来源的细胞群不仅能在体外向3个胚层的细胞分化,而且能在体内能够向各种组织细胞分化,相比较而言,形态与MSC相似的体外培养的皮肤成纤维细胞则不具有类似的分化潜能。

肝癌干细胞的研究现状The Liver Cancer Stem Cell

<<生命的化学>>2006年 第26卷 第01期

作者: 张朵, 朱海英, 马凤云, 胡以平,

期刊-核心期刊 ISSN : 1000-1336(2006)01-0056-02

肿瘤发生的癌干细胞假说认为肿瘤组织是由处于各种分化等级的细胞组成的,其中的癌干细胞数量虽少,但在肿瘤的发生、恶化、转移中起重要作用.肝细胞癌作为最常见的恶性肿瘤之一,其中是否存在"肝癌干细胞"的问题一直倍受人们关注.该文介绍肝癌干细胞的研究情况.

关键词: 癌干细胞, 肝癌干细胞, 干细胞, 肝细胞, 全部关键词
中图分类:Q25 > 生物科学 > 细胞生物学 > 细胞生理学


相似文献:

- 肝癌干细胞的研究现状 作者:唐飞,吕洪敏,向慧玲, 期刊 实用肝脏病杂志JOURNAL OF CLINICAL HEPATOLOGY 2008年 第02期

- 肝癌干细胞的研究现状 The Liver Cancer Stem Cell 作者:张朵,朱海英,马凤云,胡以平, 期刊-核心期刊 生命的化学CHEMISTRY OF LIFE 2006年 第01期

- 干细胞肿瘤干细胞与肝细胞癌发生关系研究进展 Relationship between Stem Cell, Tumor Stem cell and Hepatocellular Carcinogenesis 作者:许文,王阁, 期刊-核心期刊 中国肿瘤临床CHINESE JOURNAL OF CLINICAL ONCOLOGY 2007年 第16期

- 肝干细胞与肝癌的关系 On Relationship between Liver Stem Cell and Liver Cancer 作者:张雪妍, 期刊 天水师范学院学报JOURNAL OF TIANSHUI NORMAL UNIVERSITY 2006年 第05期

- 肝干细胞与肝癌关系的研究现状与临床价值 Research Progress and Clinical Value of Hepatic Stem Cells and Its Relations with Liver Cancer 作者:周志鹏,李波, 期刊-核心期刊 中国普外基础与临床杂志CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY 2007年 第04期

- 肝癌细胞中干细胞亚群的分离与鉴定 作者:刘胜军,方驰华, 中华医学会 中华实验外科杂志Chinese Journal of Experimental Surgery 2007年 第4期

- 原发性肝癌不同病理组织类型中肝干细胞的起源分析 Origin of hepatic stem cells in human hepatocellular carcinoma 作者:王阁,索金友,邓婧,杨进,郑继军,王红中,胡庆,李增鹏,肖华亮,王东, 期刊-核心期刊 第三军医大学学报ACTA ACADEMIAE MEDICINAE MILITARIS TERTIAE 2006年 第02期

- 原发性肝癌不同病理组织类型中肝干细胞的分析 Hepatic stem cells in different histopathologic types of primary hepatic carcinoma 作者:陈川,王红中,李增鹏,王东,王阁,索金友,郑继军,张志敏,李琼,许文,雒喜中,邓婧, 期刊-核心期刊 中国组织工程研究与临床康复JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH 2008年 第03期

- 肝干细胞与肝再生、肝癌的关系 作者:潘兴华,陈系古,庞荣清,靳杭红, 期刊-核心期刊 世界华人消化杂志WORLD CHINESE JOURNAL OF DIGESTOLOGY 2004年 第08期

Friday, July 10, 2009

干细胞治疗神经系统疾病的基础与临床

  长期以来,人们一直认为成年哺乳动物脑内神经细胞不具备更新能力,一旦受损乃至死亡不能再生。这种观点使人们对中枢神经系统疾病的治疗受到了很大限制。虽然传统的药物、手术及康复治疗取得了一定的进展,但是仍不能达到满意的效果。近年的一些研究表明,成年哺乳动物的脑组织仍可通过神经干细胞(NSC)的分化,不断产生新的神经元,成人脑组织中同样存在神经干细胞,主要是在侧脑室下层(SVZ)和海马齿状回两处。

1992年,Reynodls等从成年小鼠脑纹状体中分离出能在体外不断分裂增殖,且具有多种分化潜能的细胞群,并正式提出了神经干细胞的概念,从而打破了认为神经细胞不能再生的传统理论。Mckay于1997年在《Science》杂志上将神经干细胞的概念总结为:具有分化为神经元、星形胶质细胞及少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。

  目前,神经干细胞研究的一个热点之一,是使用基因转移的方法,建立神经干细胞系,即诱导NSC的细胞周期不断循环往复,从而阻止其分化过程。永生化的NSC具有较好的生物学特性,它们能自我复制并在体外大量增殖,移入人体内后仍具有多向分化潜能,同时可被转染并稳定地表达外源基因。

神经干细胞的定义
  神经干细胞(neural stem cell,NSCs)是一类具有多能分化和自我更新能力的母细胞,它可以通过不对等的分裂方式产生神经组织的各类细胞。在脑脊髓等所有神经组织中,不同的神经干细胞类型产生的子代细胞种类不同,分布也不同。

神经干细胞特点
  自我更新:神经干细胞具有对称分裂及不对称分裂两种分裂方式。
多向分化潜能:神经干细胞可以向神经元、星形胶质细胞和少突胶质细胞分化。
低免疫源性:神经干细胞是未分化的原始细胞,不表达成熟的细胞抗原,不被免疫系统识别。
  组织融合性好:可以与宿主的神经组织良好融合,并在宿主体内长期存活。

神经干细胞的分类
  按分化潜能的大小 ,干细胞基本上可分为 3种类型 :第一类是全能干细胞 ,它具有形成完整个体的分化潜能 ,具有与早期胚胎细胞相似的形态特征和很强的分化能力 ,可以无限增殖并分化成全身 2 0 0多种细胞组织的潜能 ,进一步形成机体的所有组织、器官进而形成个体 ;第二类是多能干细胞 ,这种干细胞也具有分化多种细胞组织的潜能 ,但却失去了发育成完整个体的能力 ,发育潜能受到一定的限制 ;第三类是单能干细胞 ,如神经干细胞等 ,这种细胞只能向一种类型或密切相关的几种类型的细胞分化。然而横向分化的发现 ,使这个观点受到了挑战 ,譬如,神经干细胞可以分化成造血细胞。

1.根据分化潜能及产生子细胞种类不同,神经干细胞可分为:
  1)神经管上皮细胞:分裂能力最强,只存在胚胎时期,可以产生放射状胶质神经元和神经母细胞;
  2)放射状胶质神经元,可以分裂产生胶质神经元本身并同时产生神经元前体细胞或是胶质细胞。其主要作用是幼年时期神经发育过程中产生投射神经元完成大脑中皮质及神经核等的基本神经组织细胞;
  3)神经母细胞,成年人体中主要存在的神经干细胞,可以分裂产生神经前体细胞,神经元和各类神经胶质细胞;
4)神经前体细胞,各类神经细胞的前体细胞,比如小胶质细胞是由神经胶质细胞前体产生的。

2.根据部位,神经干细胞可分为:
  神经嵴干细胞(neural crest stemcell,NC-SC)和中枢神经干细胞(CNS-SC)。
  NCSC为外周神经干细胞(PNS-SC),既可发育为外周神经细胞、神经内分泌细胞和Schwann氏细胞,也可分化为色素细胞(pigmented cell)和平滑肌细胞等。NSC一般是指存在于脑部的中枢神经干细胞(CNS-SC),其子代细胞能分化成为神经系统的大部分细胞。

神经干细胞的分布
神经管形成以前 ,在整个神经板检测到神经干细胞的选择性标记物神经巢蛋白 (nestin),是细胞的骨架蛋白。构成小鼠神经板的细胞 ,具有高效形成神经球的能力。但目前尚不能肯定神经板与神经干细胞是否具有相同的诱导机制。神经管形成后 ,神经干细胞位于神经管的脑室壁周边。关于成年个体脑神经干细胞的分布,研究显示成年嗅球、皮层、室管膜层或者室管膜下层、纹状体、海马的齿状回颗粒细胞下层等脑组织中分布着神经干细胞。研究发现脊髓、隔区也分离出神经干细胞 ,这些研究表明 ,神经干细胞广泛存在于神经系统。在中央管周围的神经干细胞培养后亦可形成神经球并产生神经元。脊髓损伤时 ,来自于神经干细胞的神经元新生受到抑制 ,而神经胶质细胞明显增多 ,其机制可能与生成神经元的微环境有关。

神经干细胞的分离和培养方法:
1. 分离和培养
取出胚胎脑,于手术显微镜下剥离硬脑膜,分离出大脑半球。随后分别将它们移至平皿中,剪成1mm3小块,用抛光的直头细滴管轻轻吹打后,使之成为细胞悬液,并通过尼龙筛网过滤,以去除粘连的组织纤维,将收集到的细胞悬液离心后,重悬于DMEM/F12中,用滴管再次吹打,如此反复两次,就可获得脑组织的单个细胞悬液。经计数和活力观察,将细胞密度调至1×106 /ml, 并以1×105/ml细胞密度种入T25细胞培养瓶中,同时加入 bFGF-2和 EGF,于5% CO2、 37℃环境中培养,直到NSCs分裂、 增殖形成较大的神经细胞球后再作传代处理。

2. 传代
当神经细胞球逐渐增大至含50-200个细胞的球时,即可传代。传代时将神经细胞球悬液移至离心管,经低速离心后,吸去上清液, 加入200 μl DMEM/F12培养液,用200 μl Pipette 吹打100次,使之成为单个细胞悬液,定量加入DMEM/F12后, 进行细胞计数和活力观察。经传代后的细胞既可用来诱导分化,也可以继续种瓶培养,还可以冷冻保存以备后用。

3. NSCs的分化和鉴定
取培养的神经细胞球吹打成单细胞以后,以5×104/片细胞密度种于经多聚鸟氨酸包被的玻璃盖玻片上,在1%FBS-DFNG中分化培养5 天后, 做免疫细胞化学染色。如需要作神经细胞球的nestin染色,则直接将培养中的神经细胞球种于盖玻片上,待培养过夜后,固定染色。用抗nestin单抗来标记NSCs;而神经元、 星型胶质细胞和少突胶质细胞则分别用抗β-Tubulin Ⅲ单抗、 抗GFAP单抗和抗RiP单抗来标记。同时以Hoechst作核染。

神经干细胞的分化机制
神经干细胞定向诱导分化调控是目前神经干细胞研究的重大课题 ,脑内主要组织细胞包括神经元、星形胶质细胞及少突胶质细胞等。大脑的功能主要依赖于神经元并通过神经信息的传递来实现。脑内神经元种类繁多且功能极为复杂 ;如胆碱能神经元、儿茶酚胺能神经元、5-羟色胺能神经元及肽能神经元等。不同功能的神经元分布在脑内不同的部位 ,通过合成及释放相应的神经递质发挥各自独特的功能。虽然神经干细胞应用中还存在较多未解决的问题 ,但由于其广阔的应用前景 ,仍成为世界上神经科学界研究的热点之一。

神经干细胞的分化受基因调控。基因表达的时空方式受到其自身固有的分子程序的调控和周围环境的影响。胚胎干细胞向神经干细胞的分化需要基因调控 ,特别是不同发育分化阶段决定神经干细胞向所需功能神经细胞定向分化的主要调控基因。目前,虽然基因组测序已完成草图,但基因组序列分析仅仅反映遗传信息复杂性的一方面, 而有关遗传信息有序地、时相性地表达等复杂性的另一方面尚未完善。生物的类型变化主要是其内在的,所表达的基因是确定的,如分化细胞与祖细胞,肿瘤细胞与正常细胞等都存在着基因表达的差别。若能在这些关系密切的细胞群之间发现那些有表达差别的基因, 则可为这些相关细胞群所发生的复杂代谢和功能变化提供有意义的信息。Pevny等将神经元特异性的Sox2基因转染胚胎干细胞 ,再经维甲酸诱导,获得90 %以上的神经细胞。Giebel等表达Nurrl基因对于中脑神经前体细胞分化为多巴胺能神经元起决定作用。这些研究表明基因调控与神经干细胞的定向分化密切相关。

细胞因子与神经干细胞的增殖、分化密切相关。不同的细胞因子在神经干细胞的诱导分化中起重要作用, 但尚没有一种细胞因子能在体外将神经干细胞全部诱导分化为所需的功能神经细胞,参与神经干细胞诱导分化的细胞因子有白细胞介素类,如IL-1、IL-7、IL-9及IL-1 1等。神经营养因子对神经干细胞分化到终末细胞的整个过程均有影响 ,如果将培养的神经干细胞置于脑源性神经营养因子作用下 ,大量的神经干细胞可以表现出分化神经元的特性。生长因子类,如上皮生长因子、神经生长因子及碱性成纤维细胞生长因子等也影响神经干细胞的分化。神经干细胞对不同种类、不同浓度的细胞因子,以及多种因子联合应用作用各不相同,在神经干细胞发育分化的不同阶段,相同因子的作用也不同。如在表皮生长因子及碱性成纤维细胞生长因子存在的条件下 ,胚胎神经干细胞主要向神经元、星形胶质细胞和少突胶质细胞分化 ,而出生后及成年的脑神经干细胞 ,则无论是否有上皮生长因子及碱性成纤维细胞生长因子 ,都主要分化为星形胶质细胞。这些研究提示 ,上皮生长因子及碱性成纤维细胞生长因子对神经干细胞向功能细胞的诱导分化是复杂的。

信号转导在神经干细胞分化中十分重要。作为一种信号传导途径 ,Notch信号传导系统非常重要。目前认为Notch受体是一种整合型膜蛋白 ,是一个保守的细胞表面受体 ,它通过与周围配体接触而被激活,其信号传导途径开始于Notch受体与配体结合后其胞浆区从细胞膜上脱落,并向细胞核转移,将信号传递给下游信号分子。该途径的信号传递主要是通过蛋白质相互作用,引起转录调节因子的改变或将转录调节因子结合到靶基因上,实现对特定基因转录的调控。当激活Notch途径时,干细胞进行增殖,当抑制Notch活性时,干细胞进入分化程序。这些研究结果表明找到调节Notch信号途径的方式 ,就可能通过改变Notch信号来精确调控神经干细胞向神经功能细胞分化的过程和比例。此外 ,Janus激酶信号转导递质与转录激活剂 (JAK-STAT)信号传导系统也参与干细胞的调控。

神经干细胞用于治疗的可能机理
  1、患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位, 代替或部分代替受损的神经功能。

  2、神经干细胞分化以后,可以分泌多种神经营养因子,促进损伤细胞的修复。

3、神经干细胞可以增强神经突触之间的联系,建立新的神经环路。

4、 神经干细胞可以促进受损神经组织的再分化。

神经干细胞移植的重要性
  对一些神经系统疾病,如帕金森氏病,传统的药物治疗效果不令人满意,吃药只可暂时性的控制疾病,一旦停药,病症复现甚至更严重。常年服药不仅让患者痛苦不已,而且对身体造成极大的危害,导致其他严重疾病的并发。药物不具备激活脑神经细胞的功能是根本原因,所以要想从根本上治疗脑病等神经系统疾病,借助外界移植神经干细胞是一有效的方法。

科学研究证明了神经干细胞的定向分化性,使修复和替代死亡的神经细胞成为现实。为了减少神经损伤的后遗症,延缓或抑止疾病的进一步发展,取得更好的恢复效果,从根本上修复和激活死亡神经细胞是十分必要的。

神经干细胞移植的方法
1.通过静脉注射移植。
2.通过介入方法作动脉内移植。
2.通过腰穿作鞘内移植。
3.通过脑室穿刺移植。
4.通过立体定向技术直接移植到病变部位。
  
影响神经干细胞治疗效果的因素:
1. 病例的选择
2. 干细胞的质量
3. 干细胞的数量
4. 给药途径
5. 辅助治疗

目前神经干细胞被用于治疗的疾病类型
中风(脑梗塞、脑出血)后遗症、 小脑萎缩症(小脑性共济失调)、脊髓损伤、脑萎缩、脑外伤后遗症、 帕金森氏综合症、 运动神经元病(ALS)、 放射性脑病、多发性硬化、 面瘫、多系统萎缩症(MSA)、老年痴呆症、视神经萎缩

神经干细胞在神经发育和修复受损神经组织中发挥重要作用。神经干细胞移植是修复和代替受损脑组织的有效方法 ,能重建部分环路和功能。Wagner等将神经干细胞移植到帕金森病模型的鼠脑 ,神经干细胞在其脑组织中迁移并修复损毁的脑组织 ,且震颤症状明显减轻 ,可能是神经干细胞分化成为多巴胺样神经元起到治疗作用。Piccini等从流产胎儿脑中分离的神经组织细胞,移植入患者的脑中治疗帕金森病,结果有一半以上的患者症状得到明显改善,而且效果持续存在。多发性硬化是发病率较高的神经系统疾病 ,在其啮齿类动物模型中发现产生髓鞘的少突胶质细胞被破坏或失去功能 ,将神经干细胞直接移植到鼠脑中,移植的细胞在脑中发生了大范围的迁移,在分化成的少突胶质细胞中,约有40 %的细胞形成了髓鞘,其特性非常接近正常状态,一些接受移植的动物其典型的症状也得到了明显的改善。

脑胶质瘤是医学治疗的难点之一 ,手术切除肿瘤困难,且容易复发,放疗和化疗对肿瘤有一定的作用。由于神经干细胞具有迁移的功能,利用这种特性可以向脑部释放药物。对鼠神经干细胞进行转基因处理,使之分泌IL-4,这种物质能够激活免疫系统,对肿瘤细胞发生抗瘤攻击,患有脑胶质瘤的实验鼠接受这种细胞注射之后,寿命比未治疗的实验鼠大大延长,核磁共振成像表明,实验鼠脑部的大块肿瘤有缩小的迹象,有趣的是,既使注射的神经干细胞不分泌IL-4,实验鼠的寿命也会延长。Ling等认为这可能是由于神经干细胞还能分泌一种能够减缓肿瘤细胞分裂的未知物质的缘故。此外神经干细胞可作为基因载体 ,用于颅内肿瘤和其它神经疾病的基因治疗,利用神经干细胞作为基因治疗载体,弥补了病毒载体的一些不足。

美科学家:用神经干细胞治疗动物脑癌。神经干细胞经过基因工程改造后,能够变得跟“巡航导弹”一样,精确地追踪并摧毁深藏在大脑中的癌细胞,美国科学家已成功地在实验鼠身上证实了这一点。洛杉矶西达斯-西奈医学中心的研究人员采用的神经干细胞,能够分泌具有抗癌作用的“白细胞介素12”。他们的实验显示,患有脑癌的病鼠在注射了这种神经干细胞后,寿命平均延长50%,其中30%的病鼠对脑癌产生了长期免疫力。这项进展以封面文章的形式发表于15日出版的美国《癌症研究》杂志上。研究人员认为,神经干细胞作为一种“有前途的”脑癌治疗新手段,有可能用于根除手术后残留的肿瘤,从而降低神经胶质瘤等恶性脑癌的复发率,提高患者存活机会。

  目前,脑癌的常用治疗方法是手术切除,但缺陷是术后复发率较高,因为一些肿瘤细胞经常扩散至健康脑组织的深处,给彻底清除造成很大难度。研究曾显示,神经干细胞具有追踪这些扩散脑肿瘤细胞的特性,而一种名为“白细胞介素12”的物质,能够激活机体免疫系统中具有杀灭肿瘤能力的细胞。西达斯-西奈医学中心的科学家们成功地将二者相结合,利用基因工程手段,开发出了能够分泌“白细胞介素12”的神经干细胞。这种干细胞既能追踪、又可杀灭转移和扩散的脑肿瘤细胞。研究人员的最终目标是想将该技术应用到人身上,利用从患者骨髓中提取的神经干细胞,来治疗脑癌。但他们也表示,有些技术目前还不成熟,至少还需要相当长的一段时间,才有可能进行人体临床试验。

神经干细胞移植存在的困惑:
近年研究表明,胚胎干细胞、神经干细胞在体外的培养中都可以分化成为神经细胞,并且已经在小鼠、大鼠模型移植实验中取得明显疗效。另外,考虑到这些细胞取材比较困难,有的学者将目光转向取材相对容易的骨髓间充质干细胞,这些细胞可以自体移植以规避免疫排斥,而且可以转化/分化成神经细胞并产生疗效,具有优越性。

  但遗憾的是,有一些问题阻碍了干细胞临床治疗的进展,集中在以下方面:

  第一,虽然胚胎干细胞、神经干细胞在体外培养中都可以分化为神经细胞,但是分化成为特定神经细胞的比例并不高,而且每次人工诱导分化都存在一定程度的差异,无法做到产出细胞完全均一。
  第二,其他组织干细胞如骨髓来源的干细胞,尽管也能向神经细胞分化,但尚不能够证明在人体内,这些具有神经细胞抗原标记的跨胚层分化细胞,的确是有功能的神经细胞。
  第三,先前进行的大部分临床治疗,所观察到的疗效没有提供令人信服的物质基础。例如,脑卒中移植治疗没有证据说明移植细胞可以通过梗死区和下运动神经元建立功能联系。
  第四,干细胞存在致瘤性。在极少数情况下,干细胞移植能产生畸胎瘤,所以,干细胞是绝对不能用于治疗象脑震荡这样的功能性疾病的。
  当然,上述干细胞研究中面临的困惑,并没有关闭干细胞治疗研究的大门,恰恰相反,当人们急于进行移植治疗的热情趋于理智后,干细胞的治疗会更规范,前进道路上的问题就为新的进步提供了契机。 2009年1月23日,美国FDA首次批准了Geron公司使用胚胎干细胞治疗急性脊髓损伤的临床试验。

干细胞研究的里程碑(Key research events)
1. 1908 - The term "stem cell" was proposed for scientific use by the Russian histologist Alexander Maksimov (1874–1928) at congress of hematologic society in Berlin. It postulated existence of haematopoietic stem cells.
2. 1960s - Joseph Altman and Gopal Das present scientific evidence of adult neurogenesis, ongoing stem cell activity in the brain; their reports contradict Cajal's "no new neurons" dogma and are largely ignored.
3. 1963 - McCulloch and Till illustrate the presence of self-renewing cells in mouse bone marrow.
4. 1968 - Bone marrow transplant between two siblings successfully treats SCID.
5. 1978 - Haematopoietic stem cells are discovered in human cord blood.
6. 1981 - Mouse embryonic stem cells are derived from the inner cell mass by scientists Martin Evans, Matthew Kaufman, and Gail R. Martin. Gail Martin is attributed for coining the term "Embryonic Stem Cell".
7. 1992 - Neural stem cells are cultured in vitro as neurospheres.
8. 1997 - Leukemia is shown to originate from a haematopoietic stem cell, the first direct evidence for cancer stem cells.
9. 1998 - James Thomson and coworkers derive the first human embryonic stem cell line at the University of Wisconsin-Madison.
10. 2000s - Several reports of adult stem cell plasticity are published.
11. 2001 - Scientists at Advanced Cell Technology clone first early (four- to six-cell stage) human embryos for the purpose of generating embryonic stem cells.
12. 2003 - Dr. Songtao Shi of NIH discovers new source of adult stem cells in children's primary teeth.
13. 2004–2005 - Korean researcher Hwang Woo-Suk claims to have created several human embryonic stem cell lines from unfertilised human oocytes. The lines were later shown to be fabricated.
14. 2005 - Researchers at Kingston University in England claim to have discovered a third category of stem cell, dubbed cord-blood-derived embryonic-like stem cells (CBEs), derived from umbilical cord blood. The group claims these cells are able to differentiate into more types of tissue than adult stem cells.
15. August 2006 - Rat Induced pluripotent stem cells: the journal Cell publishes Kazutoshi Takahashi and Shinya Yamanaka.
16. October 2006 - Scientists at Newcastle University in England create the first ever artificial liver cells using umbilical cord blood stem cells.
17. January 2007 - Scientists at Wake Forest University led by Dr. Anthony Atala and Harvard University report discovery of a new type of stem cell in amniotic fluid.This may potentially provide an alternative to embryonic stem cells for use in research and therapy.
18. June 2007 - Research reported by three different groups shows that normal skin cells can be reprogrammed to an embryonic state in mice.In the same month, scientist Shoukhrat Mitalipov reports the first successful creation of a primate stem cell line through somatic cell nuclear transfer
19. October 2007 - Mario Capecchi, Martin Evans, and Oliver Smithies win the 2007 Nobel Prize for Physiology or Medicine for their work on embryonic stem cells from mice using gene targeting strategies producing genetically engineered mice (known as knockout mice) for gene research.
20. November 2007 - Human induced pluripotent stem cells: Two similar papers released by their respective journals prior to formal publication: in Cell by Kazutoshi Takahashi and Shinya Yamanaka, "Induction of pluripotent stem cells from adult human fibroblasts by defined factors", and in Science by Junying Yu, et al., from the research group of James Thomson, "Induced pluripotent stem cell lines derived from human somatic cells":pluripotent stem cells generated from mature human fibroblasts. It is possible now to produce a stem cell from almost any other human cell instead of using embryos as needed previously, albeit the risk of tumorigenesis due to c-myc and retroviral gene transfer remains to be determined.
21. January 2008 - Robert Lanza and colleagues at Advanced Cell Technology and UCSF create the first human embryonic stem cells without destruction of the embryo.
22. January 2008 - Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts.
23. February 2008 - Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach: these iPS cells seem to be more similar to embryonic stem cells than the previous developed iPS cells and not tumorigenic, moreover genes that are required for iPS cells do not need to be inserted into specific sites, which encourages the development of non-viral reprogramming techniques.
24. March 2008-The first published study of successful cartilage regeneration in the human knee using autologous adult mesenchymal stem cells is published by Clinicians from Regenerative Sciences.
25. October 2008 - Sabine Conrad and colleagues at Tübingen, Germany generate pluripotent stem cells from spermatogonial cells of adult human testis by culturing the cells in vitro under leukemia inhibitory factor (LIF) supplementation.
26. 30 October 2008 - Embryonic-like stem cells from a single human hair.
27. 23 January 2009 MENLO PARK, Calif. Geron Receives FDA Clearance to Begin World's First Human Clinical Trial of Embryonic Stem Cell-Based Therapy. Geron to Study GRNOPC1 in Patients with Acute Spinal Cord Injury
28. 1 March 2009 - Andras Nagy, Keisuke Kaji, et al. discover a way to produce embryonic-like stem cells from normal adult cells by using a novel "wrapping" procedure to deliver specific genes to adult cells to reprogram them into stem cells without the risks of using a virus to make the change. The use of electroporation is said to allow for the temporary insertion of genes into the cell.
29. 05 March 2009 Australian scientists find a way to improve chemotherapy of mouse muscle stem cells.
30. 09 March 2009 US President Obama lifted federal funding limits on human embryonic instituted by former President Bush.